Characteristic polynomials of symmetric matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristic polynomials of real symmetric random matrices

It is shown that the correlation functions of the random variables det(λ−X), in which X is a real symmetric N × N random matrix, exhibit universal local statistics in the large N limit. The derivation relies on an exact dual representation of the problem: the k-point functions are expressed in terms of finite integrals over (quaternionic) k × k matrices. However the control of the Dyson limit, ...

متن کامل

Small-Span Characteristic Polynomials of Integer Symmetric Matrices

Let f(x) ∈ Z[x] be a totally real polynomial with roots α1 ≤ . . . ≤ αd. The span of f(x) is defined to be αd − α1. Monic irreducible f(x) of span less than 4 are special. In this paper we give a complete classification of those small-span polynomials which arise as characteristic polynomials of integer symmetric matrices. As one application, we find some low-degree polynomials that do not aris...

متن کامل

Characteristic Polynomials of p-adic Matrices

We analyze the precision of the characteristic polynomial χ(A) of an n × n p-adic matrix A using differential precision methods developed previously. When A is integral with precision O(p), we give a criterion (checkable in time O (̃n)) for χ(A) to have precision exactly O(p). We also give a O (̃n) algorithm for determining the optimal precision when the criterion is not satisfied, and give examp...

متن کامل

Characteristic Polynomials of Nonnegative Integral Square Matrices and Clique Polynomials

Clique polynomials of vertex-weighted simple graphs coincide with polynomials of the form det(1 − xM), M a square matrix over N.

متن کامل

Characteristic Polynomials of Skew-Adjacency Matrices of Oriented Graphs

An oriented graph Gσ is a simple undirected graph G with an orientation, which assigns to each edge a direction so that Gσ becomes a directed graph. G is called the underlying graph of Gσ and we denote by S(Gσ) the skew-adjacency matrix of Gσ and its spectrum Sp(Gσ) is called the skew-spectrum of Gσ. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1968

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1968.25.433